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On the Survival Probability of a Random Walk in a 
Finite Lattice with a Single Trap 
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We consider the survival of a random walker in a finite lattice with periodic 
boundary conditions. The initial position of the random walker is uniformly dis- 
tributed on the lattice with respect to the trap. We show that the survival of a 
random walker, ( U , ) ,  can be exactly related to the expected number of distinct 
sites visted on a trap-free lattice by 

(&> 
(u~)  = 1 ND (*) 

where N D is the number of lattice points in D dimensions. We then analyze the 
behavior of ( S n )  in any number of dimensions by using Tauberian methods. 
We find that at sufficiently long times (S~)  decays exponentially with n in all 
numbers of dimensions. In D = 1 and 2 dimensions there is an intermediate 
behavior which can be calculated and is valid for N 2 > n > l  when D =  1 and 
Nln N > n > l  when D = 2 .  No such crossover exists when D~>3. The form of 
(*) suggests that the single trap approximation is indeed a valid low-concen- 
tration limit for survival on an infinite lattice with a finite concentration of 
traps. 
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1. I N T R O D U C T I O N  

The prob lem of determining statistical propert ies  of the return of a lattice 
r a n d o m  walker  to its s tart ing point  was first discussed by Polya.  (1) It  can 
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be framed in terms of properties of a random walk on a lattice containing a 
single trap. It is well known, for example, that even when return to a 
starting point is certain, as in D = 1 and 2 dimensions, the expected time to 
trapping of a random walk is infinite provided that the lattice itself is 
infinite. (2) A number of investigators have analyzed properties of a random 
walk in the presence of a trap. These have usually focused on properties of 
the random walk on infinite lattices- (3'4) Detailed results for moments of 
trapping time on finite lattices were recently presented by Kozak and his 
collaborators. (5-1~ In the present paper we present some results related to 
the survival probabilities of random walks on finite lattices containing a 
single trap. We will show that in D = 1 and 2 dimensions there is a 
crossover in the behavior of the asymptotic survival probability that 
depends on the relation between the step number, n, and the number of 
sites that comprise the lattice. 

2. GENERAL RELATIONS 

Let the number of lattice sites in the unit cell be N ~ where D is the 
number of dimensions and N is the number of lattice sites to an edge. The 
trapping site will be labeled s and the starting point is assumed to be at 0. 
Later we will average over all possible trapping sites, leading to a much 
simplified analysis. Let us first specify some quantities and relations for 
trap-free random walks that will be needed in our later analysis. If p(j) 
represents the probability that a single step taken by the random walker is 
equal to j, then many properties of the random walk can be given in terms 
of the structure function 

2(2tom/N) = ~ p(j) exp(2ztim "j/N) (1) 
J 

If P.(r)  is the probability that the random walker is at r at step n, and 
P(r, z) denotes the generating function 

P(r, z) = ~ P.(r)  z" (2) 
n = O  

then P(r, z) can be expressed as 

1 N - - 1  N - - 1  

P(r, z) = ~  ~ " -  ~ exp(2~ir, m/N)/[1 -z2(2~m/N)] (3) 
m I 0 m o  = 0 

It will also be convenient, in what follows, to decompose P(r, z) as 

1 
P(r, z) - ND(1 _ z) t- q~(r, z) (4) 
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where the first term contains the singularity at z = 1 and ~0(r, z) remains 
finite as z ~ 1. Let F,(r)  be the probability that the first passage time to r is 
equal to n, and let F(r, z) be the corresponding generating function with 
respect to n. The function F(r, z) can be expressed in terms of the P(r, z) 
as (ll) 

F(r, z) = [1 - P(O, z)q/P(O, z), r # 0 
(5) 

= P(r, z)/P(O, z), r # 0 

Having defined these functions for the trap-free lattice random walk let 
us define g,,(r) be the probability that the random walker is at r at step n in 
the presence of a trap at s, and let g(r, z) be the generating function with 
respect to step number. This function can easily be found in terms of the 
functions defined in the last paragraph by noting that random walks that 
reach r at step n can be represented as all walks that do so in the absence 
of traps less those that reach s before n and then reach r at n, again on the 
trap-free unit cell. Thus we can immediately write 

g(r, z) = P(r, z) - F(s, z) P(r - s, z) 
(6) 

= P ( r ,  z )  - P(s, z) P(r - s, z)/P(O, z) 

If the probability that a random walk survives until step n with a trap at s 
is denoted by U,(s), then we can write 

U,(s)= ~ g,(r) or U(s, z ) =  ~ g(r,z) (7) 
r ( # s )  r ( 4 : s )  

in terms of the generating functions. Taking account of the identity 
52r P(r, z ) =  (1--z) -1 we can perform the indicated sum over r in Eq. (6), 
finding 

1 I P(s, z) ]  
u(s, z)=V2~_ ~ 1 P(0 ,~  (8) 

This expression has the obviously necessary properties that when s =  0, 
U(s, z) = 0 or U,(O) = 0, and when ]sl >> 1, [P(s, z)/P(O, z)[ is very small by 
the Riemann-Lebesgue lemma, so that U,(s)--, 1. Equation (8) is com- 
pletely general and independent of whether the lattice is finite or infinite. 

To find a simple expression for the generating function of survival 
probability let us average Eq. (8) over all possible trap sites, assigning the 
probability I /N  D to each site. If the survival probability averaged over all 
sites is denoted by (U~),  we find that 

U(z)= ~ (U, ,>z  ="l-~--z 1 - N D ( 1 - z ) P ( O ,  zi  (9) 
rl = 0 

822/40/1-2-13 
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This can be written in an interesting way if we recall that the generating 
function for the expected number of distinct points visited by an n step ran- 
dom walk is ~ 

S(z)= ~ ( S , , } z " =  [ ( 1 - z ) 2 p ( O , z ) ]  -1 
n = O  

(10) 

On substituting this result into Eq. (9), we find that (Un} can be written 
in terms of (Sn}  as 

(&)  (11) ( U ~ )  = 1 NO 

so that we need only study the properties of ( S ,  } to elucidate those of the 
survival probabilities. 

3. A S Y M P T O T I C  P R O P E R T I E S  

The asymptotic behavior of (S,,} on an infinite lattice has been 
known and rederived in many ways since the original investigation by 
Dvoretzky and Erd6s, (12) but the comparable results have not yet appeared 
for random walks on finite lattices. To derive such results let us substitute 
Eq. (4) into the expression for S(z)  given in Eq. (10) which leads to 

1 1 
S(z)  = (1 - z) (1 - z) (p(O, z) + 1IN D = f ( z ) / ( 1  - z) (12) 

where the function f (z )  is a rational function of z and can therefore be 
expressed as 

f ( z ) =  ~ L z  n (13) 
n = 0  

The behavior offn for large n can be determined by examining the behavior 
o f f ( z )  near its radius of convergence. To find this behavior we must find 
the root with the smallest magnitude of the equation 

(1 - z )  ~o(O, z)= -1 IN  ~ (14) 

We consider only the case of N D ~ 1 SO that both sides of this equation 
are approximately equal to 0. Since ~p(0, z) is just a finite sum of terms of 
the form [1 - -z2(27crn/N)]- I  where [21 ~< 1 it can have no zeros inside of 
[z[ = 1 so that the smallest root of Eq. (14) must have the property [z[ > 1. 
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Because the right-hand side of Eq. (14) is small in the limit of large N this 
root must be close to 1. For z ~  1, q)(0, 1) remains finite, and has been 
shown by Montroll and Weiss ~ to have the form, for symmetric random 
walks, 

(p(O, 1) ~--N/(6~2), 

In N/( rcO-  1 o '2) ,  (15) 

~const,  

D = I  

D = 2  

D>~3 

Hence, in the neighborhood of z = 1, f(z)  has the singular behavior 

1 
f(z)  (16) 

(1 - z )  ~o(o, 1 ) +  1 / N  D 

which implies that asymptotically 

1 1 
f ~  ~p(O, 1-----)" [1 + 1/(ND~p(O, 1))] n+l (17) 

But since S(z) is related t o f ( z )  through Eq. (12) it follows that 

i = 0 

(18) 

so that at sufficiently large n (Un)  decays exponentially with n, indepen- 
dent of dimension. This is verified in detail for D = 1 in the Appendix to 
this paper and has been verified for higher dimensions in a simulation 
study. Notice that although we have inserted the specific decay constant 
[N~ 1)] 1 in Eq. (18) this is only approximate and the more accurate 
constant depends on the solution to Eq. (14) Although the exponential 
form in Eq. (18) appears to be valid for all n in fact it is only good for 
n > NDcp(0, 1). Thus, when D = 1 it is useful when n > N 2 for symmetric 
random walks and for n > 0(1) for asymmetric random walks. In D = 2 
dimensions it is valid when n > N 2 In N for the symmetric random walk, 
and for D =  3 we must have n > N  3 for the exponential to be a useful 
approximation. Den Hollander (13) has also obtained the long-time 
exponential limit for symmetric random walks using a completely different 
argument. His treatment is also valid for several traps. 

Next, let us consider the regime N>>n>> 1 so that the random walk has 
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sampled relatively few of the lattice points. In that case for D = 1 and a 
symmetric walk, the function ~0(0, z) behaves like 

~o(0, z ) ~  I-o(1 - z)  v2 ] -1 (19) 

in the neighborhood of z = 1. This implies, by Eq. (12), that 

1 1 
S(z) 

(1 - z )  ( 1 / 6 ) [ ( 1  - z ) / 2 ]  1/2 + 1/N 
(20) 

E ~21/26-(1--z)3/a 1 N ( 1 - z )  1/2 

By using a Tauberian theorem common in random walk analyses ~141 we see 
that the lowest-order term in this last equation leads to the estimate 

which is just the result obtained on the infinite lattice. Higher-order terms 
can also be obtained provided that correction terms to Eq. (19) are 
evaluated. There is a crossover in the behavior of ( U , )  from the behavior 
in Eq. (21) to the exponential form that occurs when n =  O(N2). This can 
be demonstrated in detail for the one-dimensional case, as shown in the 
Appendix, but not in higher dimensions since there is no comparable 
solution in closed form. In D = 2  dimensions one finds the analog of 
Eq. (21), 

( Sn)~ Tc6162rt (22) 
N 2 N 2 i n  n 

where 6~ and 62 are the variances in x and y directions. A crossover to the 
exponential form occurs when n = O(N 2 In N). In three or more dimen- 
sions, since ~0(0, 1) is a constant as N---, ~ we expect there to be no change 
in the asymptotic behavior of ( U  n) over the whole range n ~> 1. 

4. DISCUSSION 

While the present theory has been developed for the case of a single 
trap it is readily extended to the analysis of k traps on a finite lattice by 
using the theory originally developed by Montroll/TM We do not expect 
this generalization to lead to qualitatively different conclusions from those 
of the present analysis, nor do we expect any qualitative differences to 
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occur when different boundaries are used as is confirmed by the analysis of 
den Hollander (~3). The exponential limit for sufficiently large n does show 
up in simulations of trapping problems because one necessarily deals with 
finite lattices. It can sometimes obscure other behavior, such as the 
Donsker-Varadhan (15'~7) form for asymptotic survival probability in a field 
of traps. 

We also point out that Montroll's (~8) suggestion that the single-trap 
problem can be regarded as an approximation to the multiple randomly 
scattered trapping problem at low trap densities receives some confir- 
mation from our result in Eq. (11). The survival probability in any field of 
traps can be expressed as 

(T(n))  = ((1 - c) s") (23) 

where the brackets indicate an average over all configurations and all ran- 
dom walks. In the low trap concentration limit one can expand Eq. (27) as 

C 2 

( T(n) ) ~ 1 - c ( S , )  + ( S,,(S,,- 1))~-  . . . .  (24) 

If one sets c = N -D and truncates this series at the linear term one finds 
Eq. (11). Equation (24) indicates that higher-order terms require 
calculation of ( S  2) which requires a much more sophisticated approach 
than that taken here. (19 22) It is unclear whether the approximation 
obtained by decomposing an infinite lattice into unit cells with a small 
number of traps, will advance our understanding of how the survival 
probability behaves as a function of trap concentration. An analysis of the 
survival probability that is at best valid at low trap concentrations has 
been given by Weiss, (23) by using the asymptotic distribution developed by 
Jain and his collaborators. ~19-22/Whether that theory is more accurate than 
the simple theory developed here remains to be tested by a simulation 
study. 

A C K N O W L E D G M E N T  

We are greatful to Dr. Frank den Hollander for pointing out a serious 
mistake in an earlier version of this manuscript. A.B. acknowledges support 
from Deutsche Forschungsgemeinschaft. 

APPENDIX:  ANALYSIS  OF THE CROSSOVER 
IN ONE D I M E N S I O N  

Since the geometry of a one-dimensional random walk is necessarily a 
simple one we can identify the number of distinct sites visited by the ran- 
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dom walk with the span, i.e., the maximum displacement minus the 
minimum displacement. (24'25/ This allows us to derive an expression for 
( S , )  that will be valid for all values of n. We start from a representation 
for the span, S, at step n, that is due to Weiss and Rubin(25): 

S 8 ~ d 2 
p~( )~~  ,__L ~ ~ E~(0)]0= ~(~,+ ~)/s 

(A1) 
= ~ g ~  -- 

/=0  

where g,(x) is defined by the equation. Equation (A1) is valid for n>> 1. In 
this approximation we can, with small error, replace the discrete lattice by 
a continuous circle since the trap can be regarded as a point both for the 
lattice and for the circle. 

Let the circumference of the circle be L. It then follows that ( S , )  is 
given by 

S,)  = L f [  p,(S)dS + fo Sp,(S)dS (A2) ( 

since once the span reaches the value L it remains there. By making a 
change of variables to v = 7r(2/+ 1)/S we find 

8L ~ 1 r~(2l+ 1)/L 
( S o )  = 7  ,_L 0 (2 t+ l) 2 |,o vg(v) dv 

8 ~, 1 f ~  g(v) dv (A3) 
+ - (21+ 1) (2t+l)/L T~I= 0 

In D = 1 dimension we can make the approximation 

h(O) = 2"(0)~  exp(-n2a202/2) (A4) 

where a 2 is the variance for a single step. In Eq. (A3) we can write 
g(v) = h"(v) and integrate by parts in the first set of integrals. In this way 
we find 

( S " ) ~  -~2 ~ (2 /+1 )  2 1 - e x p  - (A5) 
l = o 2L2 

But this sum has been discussed by Weiss and Havlin, (26) who found a 
result that implies 
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which is known to be the result for the infinite lattice. ~12~ On the other 
hand, when mr2>L 2, (Sn) is approximately given by the l = 0  term in 
Eq. (A5) which is an exponential dependence on n. Hence Eq. (A5) gives a 
formula that interpolates between the square root and exponential 
behavior of (S.). 
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